淘宝bearings(bearingtester)

本篇文章给大家谈谈bearings,以及bearingtester的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

文章详情介绍:

15个复杂的机械动图,你看懂了几个,都看懂了就可以出师了

 

1、涡轮增压 Turbo Charger

大家可能会觉得涡轮增压装置非常复杂,其实并不复杂,涡轮增压装置主要是由涡轮室和增压器组成。首先是涡轮室的进气口与发动机排气歧管相连,排气口则接在排气管上。然后增压器的进气口与空气滤清器管道相连,排气口接在进气歧管上,最后涡轮和叶轮分别装在涡轮室和增压器内,二者同轴刚性联接。这样一个整体的涡轮增压装置就做好,你的发动机就好像电脑CPU一样被”超频”了。

2、差速器Differential

差速器解决了在向两边半轴传输动力的同时,还能允许两边半轴以不同的转速进行旋转,以此减少两边轮胎与地面之间的磨损。多亏了这种行星齿轮机构,让我们的轮胎损耗减少许多,不过也不可避免纯在一些缺陷,比如因剧烈驾驶导致一侧车轮发生离地时,因等扭矩作用,发动机的全部动力将会传递到打滑的半轴上,而另一侧将会彻底失去动力,最终导致汽车失控。

3、CVT无级变速器

无级变速技术采用传动带和工作直径可变的主、从动轮相配合来传递动力,可以实现传动比的连续改变,从而得到传动系与发动机工况的最佳匹配。无级变速器与常见的液压自动变速器最大的不同是在结构上,后者是由液压控制的齿轮变速系统构成,还是有挡位的,它所能实现的是在两挡之间的无级变速,而无级变速器则是两组变速轮盘和一条传动带组成的,比传统自动变速器结构简单,体积更小。另外,它可以自由改变传动比,从而实现全程无级变速,使车速变化更为平稳,没有传统变速器换挡时那种“顿”的感觉。

4、离合器 Clutch

离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。

5、深沟球轴承Deep Groove Ball Bearings

深沟球轴承适用于高转速甚至极高转速的运行,而且非常耐用,无需经常维护。该类轴承摩擦系数小,极限转速高,尺寸范围与形式变化多样。主要承受径向负荷,也可承受一定量的轴向负荷。深沟球轴承由一个外圈,一个内圈、一组钢球和一组保持架构成。深沟球轴承类型有单列和双列两种,深沟球结构还分密封和开式两种结构,开式是指轴承不带密封结构,密封型深沟球分为防尘密封和防油密封。防尘密封盖材料为钢板冲压,只起到简单的防止灰尘进入轴承滚道。防油型为接触式油封,能有效的阻止轴承内的润滑脂外溢。

6、十字滑块联轴器 Cross Coupling

十字滑块联轴器又称滑块联轴器,由两个在端面上开有凹槽的半联轴器和一个两面带有凸牙的中间盘组成。因凸牙可在凹槽中滑动,故可补偿安装及运转时两轴间的相对位移。

7、汽车万向节Universal Joint

万向节即万向接头,是实现变角度动力传递的机件,用于需要改变传动轴线方向的位置,它是汽车驱动系统的万向传动装置的 “关节”部件。万向节与传动轴组合,称为万向节传动装置。 在前置发动机后轮驱动的车辆上,万向节传动装置安装在变速器输出轴与驱动桥主减速器输入轴之间;而前置发动机前轮驱动的车辆省略了传动轴,万向节安装在既负责驱动又负责转向的前桥半轴与车轮之间。

8、曲柄连杆机构

曲柄连杆机构的作用是提供燃烧场所,把燃料燃烧后气体作用在活塞顶上的膨胀压力转变为曲轴旋转的转矩,不断输出动力。一般由机体组、活塞连杆组和曲轴飞轮组三部分组成。曲柄连杆机构的作用是提供燃烧场所,把燃料燃烧后气体作用在活塞顶上的膨胀压力转变为曲轴旋转的转矩,不断输出动力。曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。在作功冲程,它将燃料燃烧产生的热能活塞往复运动、曲轴旋转运动而转变为机械能,对外输出动力;在其他冲程,则依靠曲柄和飞轮的转动惯性、通过连杆带动活塞上下运动,为下一次作功创造条件。

9、三级打气筒

使用打气筒时,要把它的出气管接到自行车轮胎的气门上,气门的作用是只允许空气从打气筒进入轮胎,不允许空气从轮胎倒流入打气筒.打气筒的活塞和筒壁之间有空隙,活塞上有个向下凹的橡皮碗.向上拉活塞的时候,活塞下方的空气体积增大,压强减小,活塞上方的空气就从橡皮碗四周挤到下方.向下压活塞的时候,活塞下方空气体积缩小,压强增大,使橡皮碗紧抵着筒壁不让空气漏到活塞上方,继续向下压活塞,当空气压强足以顶开轮胎的气门芯时,压缩空气就进入轮胎.同时筒外的空气从筒上端的空隙进入活塞的上方。

10、泥浆泵

泥浆泵是一种宽泛泵的一个通俗概念,石油钻井领域的应用较多。在常用的正循环钻探中﹐它是将地表冲洗介质──清水﹑泥浆或聚合物冲洗液在一定的压力下,经过高压软管﹑水龙头及钻杆柱中心孔直送钻头的底端,以达到冷却钻头、将切削下来的岩屑清除并输送到地表的目的。常用的泥浆泵是活塞式或柱塞式的,由动力机带动泵的曲轴回转,曲轴通过十字头再带动活塞或柱塞在泵缸中做往复运动。在吸入和排出阀的交替作用下,实现压送与循环冲洗液的目的。

11、间歇运动机构

有些机械需要其构件周期地运动和停歇。能够将原动件的连续转动转变为从动件周期性运动和停歇的机构,称为间歇运动机构。例如牛头刨床工作台的横向进给运动,电影放映机的送片运动等都用有间歇运动机构。常见的间歇运动机构有:棘轮机构、槽轮机构、连杆机构和不完全齿轮机构。

12、转向梯形机构

转向梯形机构应用在汽车上,当汽车转向时,各个车轮的轴线应当相交于一点,才能实现车轮的纯滚动,否则轮胎将发生打滑。因此,内转向轮的偏转角应当大于外转向轮的偏转角,为了实现内外转向轮偏转角的上述关系,发明了转向梯形杆系,通过由横拉杆和左右转向梯形臂组成的这种梯形杆系,可以非常近似地满足上述要求。

13、凸轮机构

凸轮机构是机械中的一种常用机构,由凸轮、从动件和机架组成,他能实现机械自动控制。由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。

14、缠绕机构

这个机构包含了齿轮传动、凸轮机构,是一个多机构的组合。

15、奎西发动机

奎西发动机是一种基于转子发动机的改进型发动机,与一般转子发动机的三叶片不同,奎西发动机使用了四部分组成的链条式转子,使得其具有四个冲程,兼顾了四冲程发动机和转子发动机的优点。带托架的奎西发动机的与简单发动机的工作原理相同,只是所增添的设计能够产生光爆震。 光爆震是一种优质燃烧模式,该模式要求更大的压缩和更强的坚固性,而这些都是活塞发动机或旋转发动机所不能提供的。光爆震所需的高压会给发动机本身带来巨大压力。 活塞发动机不能承受爆震威力。 而传统旋转发动机(如汪克尔发动机)因燃烧室较长而限制了所能达到的压缩量,因此传统旋转发动机不能提供发生光爆震所需的高压环境。

 

机械传动装置基础件失效分析

产品的失效分析,在20世纪70 年代就由国外引入国内,最近30年发展得很快:不少院校开设了有关产品失效分析的课程,尤其开展失效分析和预防方面的科学研究;许多产品制造单位为了提高产品的质量,开始重视产品的失效分析。

今天给大家推荐这本《机械传动装置基础件失效分析》是作者在多年的失效分析工作中,对一些疑难的案例深入分析研究的总结,根据这些案例的分析资料,已写成失效分析讲稿,并在国内30多个单位(主要面向工厂、企业)举办失效分析专题讲座。这本书就是依据长期失效分析工作的经验和已有的讲稿,精选案例撰写的。可以说非常实用。

推荐理由

(1)本书失效分析的对象集中在机械传动(齿轮传动、蜗杆传动等)装置基础件(齿轮、轴、轴承和紧固件等)的范围内,不涉及其他的零部件,是机械传动专业的失效分析专著。

(2)各零部件的失效分析内容可分为零部件失效分析基础知识和失效分析实例。失效分析基础知识,主要围绕机械传动基础件失效分析来论述,因此能够以较小的篇幅阐明机械传动失效分析需要的基础知识。

(3)本书中精选的28个失效分析典型案例都是作者处理过的一手资料。

(4)本书中的失效分析案例很重视背景材料的论述,因为机械零部件的失效与服役背景有很大的关系。

(5)本书精选的案例中,有些是机械传动失效的“常见病”、“多发病”,有些确是失效分析的“疑难杂症”,本书中也包含了这部分的内容,以便扩大眼界,引发读者深入探讨的兴趣。

(6)本书某些案例的研究和分析不但解决了生产中的实际问题,而且具有一定的学术深度。

内容简介

《机械传动装置基础件失效分析》主要论述机械传动(齿轮传动、蜗杆传动等)装置基础件(轴、齿轮、轴承、花键和紧固件等)的失效分析和预防。书中精选了28个失效分析典型案例,都是作者处理过的第一手资料。某些案例的研究和分析不但解决了生产中的实际问题,而且具有一定的学术深度,如齿轮的电蚀失效、扭转微动多冲疲劳失效等以及断口分析中遇到的裂纹动力学和瓦纳线问题等,以扩大眼界,引发读者深入探讨的兴趣。
本书适合以下人员参阅:从事机械传动装置的设计、制造、质量管理、使用、维护和现场失效分析的工程技术人员,从事材料和热处理工作和研究的技术人员,高等院校机械设计与制造专业的师生等。

拖动右侧滚动条可以查看全目录

目录

第1章机件失效分析概述
Chapter1 Overview of Machine Elements Failure Analysis
1.1失效分析的目的002
1.2003机件失效的分类
1.3失效分析的步骤004
1.3.1失效现场调查和收集背景资料005
1.3.2失效机件的初步检查006
1.3.3实验室试验工作006
1.3.4确定失效类型和失效原因007
1.3.5检查试验和分析得来的证据是否充分完整008
1.3.6完成失效分析报告009
1.4失效分析的观察和试验010
1.4.1裂纹观察010
1.4.2宏观断口观察012
1.4.3微观断口观察与分析018
1.4.4断口分析在机件失效分析中的作用019
1.4.5化学成分分析020
1.4.6材料力学性能试验020
1.4.7金相检验022

第2章机件失效类型的特征
Chapter2 Characteristics of Machine Elements Failure Types
2.1过量变形失效025
2.2塑性断裂和脆性断裂026
2.2.1 塑性断裂的基本特征027
2.2.2韧性脆性转变030
2.2.3脆性断裂的基本特征和分类030
2.2.4氢脆断裂031
2.3疲劳断裂032
2.3.1疲劳裂纹形成和扩展的规律033
2.3.2疲劳失效分析的目标和方法036
2.3.3设计、制造工艺和材质对疲劳失效的影响039
2.4磨损失效041
2.4.1黏着磨损041
2.4.2磨料磨损042
2.4.3微动磨损和微动磨蚀疲劳043
2.4.4磨损失效分析的方法046
2.5胶合失效047

第3章轴的失效分析
Chapter3 Failure Analysis of the Shafts
3.1轴失效分析基本知识050
3.1.1概述050
3.1.2轴上的应力和断裂特征051
3.1.3轴的失效形式052
3.1.4疲劳失效中的局部应力057
3.1.5轴失效分析的程序063
3.2轴的失效分析实例064
3.2.1实例1高速线材预精轧机辊轴断裂失效分析064
3.2.2实例2减速机形面轴断裂失效分析068
3.2.3实例3减速机锥齿轮轴开裂失效分析083
3.2.4实例4压缩机高速齿轮轴断裂失效分析087
3.2.5实例5轴毂配合件的微动磨损引发轴的开裂失效分析102
3.2.6实例6减速机轴微动多冲疲劳断裂失效分析115
3.2.7实例7硬齿面齿轮减速机高速轴断裂失效分析124
3.2.8实例8风力发电机组主轴断裂失效分析138
3.2.9实例9曲轴断裂失效分析147
3.2.10实例10制氧厂离心压缩机断轴毁机失效分析152

第4章齿轮的失效分析
Chapter4 Failure Analysis of the Gears
4.1齿轮损伤和失效的形式175
4.2轮齿损伤和失效的形貌176
4.2.1磨料磨损和过度磨损失效176
4.2.2干涉磨损失效177
4.2.3胶合失效179
4.2.4齿面疲劳失效180
4.2.5轮齿折断失效189
4.2.6电蚀失效196
4.2.7塑性变形失效198
4.2.8化学腐蚀失效199
4.2.9齿轮裂纹失效199
4.2.10齿面烧伤失效201
4.2.11轮毂断裂失效204
4.3诱发轮齿损伤和失效的主要原因205
4.3.1设计方面的失误205
4.3.2材料和热加工方面的失误206
4.3.3机械加工方面的失误207
4.3.4装配方面的失误208
4.3.5使用和维护方面的失误208
4.4齿轮失效分析方法中的注意事项208
4.4.1齿轮失效的背景调查208
4.4.2失效齿轮的宏观观察210
4.4.3失效齿轮断口的微观观察211
4.4.4失效齿轮的承载能力计算复核213
4.5齿轮失效分析实例217
4.5.1实例1型钢轧机减速机齿轮齿面剥落原因分析217
4.5.2实例2高速线材厂精轧机增速箱齿轮损伤分析225
4.5.3实例3发电厂液力偶合器传动齿轮失效分析232
4.5.4实例4减速机锥齿轮齿面电蚀失效分析240
4.5.5实例5不同来料齿轮热处理后开裂失效分析252
4.5.6实例6制冷压缩机高速齿轮轮齿断裂失效分析258
4.5.7实例7高速线材厂预精轧机过桥齿轮断齿失效分析279
4.5.8实例8弧齿锥齿轮热处理裂纹成因分析和改进措施285
4.5.9实例9矿用减速机低速级齿轮轮齿断裂失效分析290
4.5.10实例10电梯用蜗杆减速机蜗轮磨损失效分析298

第5章轴承的失效分析
Chapter5 Failure Analysis of the Bearings
5.1滚动轴承的失效317
5.1.1滚动轴承失效模式的分类317
5.1.2接触疲劳失效317
5.1.3磨损失效319
5.1.4腐蚀失效321
5.1.5电蚀失效322
5.1.6塑性变形失效324
5.1.7断裂与开裂325
5.2套圈滚道面的磨损痕迹(滚迹)327
5.2.1向心轴承滚迹327
5.2.2推力轴承滚迹330
5.3影响轴承寿命的因素331
5.3.1轴承的工作游隙对轴承使用寿命的影响331
5.3.2安装精度对轴承使用寿命的影响332
5.3.3润滑油中水分对轴承寿命的影响332
5.3.4润滑添加剂对轴承疲劳寿命的影响332
5.3.5轴承预紧(预载荷)对轴承性能的影响332
5.4滚动轴承失效分析的方法333
5.4.1滚动轴承的调查334
5.4.2了解轴承的工作条件335
5.4.3宏观观察与测量337
5.4.4材料内在质量检查337
5.4.5失效表面和断口的微观观察338
5.4.6轴承的寿命复核338
5.4.7综合分析与结论339
5.5轴承失效分析实例339
5.5.1实例1高速线材精轧机滚动轴承失效分析339
5.5.2实例2高速线材精轧机增速箱齿轮损伤和轴承失效分析358
5.5.3实例3减速机滚动轴承高温抱轴失效分析377
5.5.4实例4变速行星齿轮传动机滑动轴承失效分析395

第6章螺纹紧固件和花键的失效分析
Chapter6 Failure Analysis of Thread Fasteners and Splines
6.1螺纹紧固件的失效分析400
6.1.1螺纹紧固件概述 400
6.1.2螺纹紧固件的失效与分析409
6.2螺纹紧固件失效分析实例414
6.2.1实例1减速机双头螺柱安装拧紧时断裂失效分析414
6.2.2实例2钢厂楔形导轨用螺钉断裂的失效分析419
6.3花键的失效分析422
6.3.1花键概述422
6.3.2花键的失效模式423
6.4花键的失效分析实例425
6.4.1实例3花键齿过度磨损原因分析和改进措施425
6.4.2实例4掘进机用减速装置花键轴断裂失效分析433

附录
Appendix
附录A复型法454
A.1前言454
A.2复型法的原理和主要操作步骤454
A.3复型法的应用457
附录B风力发电机组主轴断裂宏观断口分析459
B.1前言459
B.2风力机主轴断裂概况459
B.3断口宏观观察460
B.4分析463
B.5后续工作的建议465
附录C讨论——关于裂纹动力学和瓦纳线465
C.1曲轴断口的非正常现象465
C.2裂纹动力学简介466
C.3瓦纳线467
C.4曲轴断口的瓦纳线468
C.5小结470
附录D轴上键槽开裂有限元分析471

参考文献475言